Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of worldwide well being concern. Lancet 395, 470–473 (2020).
World Well being Group. Coronavirus illness 2019 (COVID-19): scenario report 51. World Well being Group 2020. https://apps.who.int/iris/handle/10665/331475 (Accessed 30 July 2022).
World Well being Group. COVID-19 weekly epidemiological replace, version 99, 6 July 2022. World Well being Group 2022. https://apps.who.int/iris/handle/10665/359148 (Accessed 30 July 2022).
Kim, M. S., An, M. H., Kim, W. J. & Hwang, T. H. Comparative efficacy and security of pharmacological interventions for the therapy of COVID-19: A scientific evaluation and community meta-analysis. PLoS Med. 17, e1003501. https://doi.org/10.1371/journal.pmed.1003501 (2020).
Jeyanathan, M. et al. Immunological concerns for COVID-19 vaccine methods. Nat. Rev. Immunol. 20, 615–632 (2020).
Rotshild, V., Hirsh-Raccah, B., Miskin, I., Muszkat, M. & Matok, I. Evaluating the scientific efficacy of COVID-19 vaccines: A scientific evaluation and community meta-analysis. Sci. Rep. 11, 22777. https://doi.org/10.1038/s41598-021-02321-z (2021).
Lauring, A. S. et al. Scientific severity of, and effectiveness of mRNA vaccines in opposition to, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the USA: Potential observational research. BMJ 376, e069761. https://doi.org/10.1136/bmj-2021-069761 (2022).
Andrews, N. et al. Covid-19 vaccine effectiveness in opposition to the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).
Cao, Y. et al. Omicron escapes the vast majority of present SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).
Park, H. C. et al. Scientific outcomes of initially asymptomatic sufferers with COVID-19: A Korean nationwide cohort research. Ann. Med. 53, 357–364 (2021).
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C. Pathophysiology, transmission, prognosis, and therapy of coronavirus illness 2019. JAMA 324, 782–793 (2020).
Brinkman, S. et al. Comparability of consequence and traits between 6343 COVID-19 sufferers and 2256 different community-acquired viral pneumonia sufferers admitted to Dutch ICUs. J. Crit. Care. 68, 76–82 (2022).
Milowitz, N. R. et al. Thrombosis in hospitalized sufferers with viral respiratory infections versus COVID-19. Am. Coronary heart J. 231, 93–95 (2021).
Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).
Sriram, Ok. & Insel, P. A. Irritation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol. Rev. 101, 545–567 (2021).
Connors, J. M. & Levy, J. H. Thromboinflammation and the hypercoagulability of COVID-19. J. Thromb. Haemost. 18, 1559–1561 (2020).
Wichmann, D. et al. Post-mortem findings and venous thromboembolism in sufferers with COVID-19: A potential cohort research. Ann. Intern. Med. 173, 268–277 (2020).
Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 383, 120–128 (2020).
Wibowo, A., Pranata, R., Lim, M. A., Akbara, M. R. & Martha, J. W. Endotheliopathy marked by excessive von Willebrand issue (vWF) antigen in COVID-19 is related to poor consequence: A scientific evaluation and meta-analysis. Int. J. Infect. Dis. 117, 267–273 (2022).
Villa, E. et al. Dynamic angiopoietin-2 evaluation predicts survival and power course in hospitalized sufferers with COVID-19. Blood Adv. 5(5), 662–673 (2021).
Xiong, X., Chi, J. & Gao, Q. Prevalence and threat components of thrombotic occasions on sufferers with COVID-19: A scientific evaluation and meta-analysis. Thromb. J. 19, 32. https://doi.org/10.1186/s12959-021-00284-9 (2021).
Matsuyama, T., Kubli, S. P., Yoshinaga, S. Ok., Pfeffer, Ok. & Mak, T. W. An aberrant STAT pathway is central to COVID-19. Cell Demise Differ. 27, 3209–3225 (2020).
Kwaan, H. C. & Lindholm, P. F. The central position of fibrinolytic response in COVID-19-A hematologist’s perspective. Int. J. Mol. Sci. 22, 1283. https://doi.org/10.3390/ijms22031283 (2021).
Kellici, T. F., Pilka, E. S. & Bodkin, M. J. Therapeutic potential of focusing on plasminogen activator inhibitor-1 in COVID-19. Developments Pharmacol. Sci. 42, 431–433 (2021).
Kang, S. et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine launch syndrome. Proc. Natl. Acad. Sci. USA. 117, 22351–22356 (2020).
Khan, S. S. The central position of PAI-1 in COVID-19: Thrombosis and past. Am. J. Respir. Cell Mol. Biol. 65, 238–240 (2021).
Tipoe, T. L. et al. Plasminogen activator inhibitor 1 for predicting sepsis severity and mortality outcomes: A scientific evaluation and meta-analysis. Entrance. Immunol. 9, 1218. https://doi.org/10.3389/fimmu.2018.01218 (2018).
Liu, R. M. Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid. Redox Sign. 10, 303–319 (2008).
Hammer, S. et al. Extreme SARS-CoV-2 an infection inhibits fibrinolysis resulting in modifications in viscoelastic properties of blood clot: A descriptive research of fibrinolysis in COVID-19. Thromb. Haemost. 12, 1417–1426 (2021).
Zuo, Y. et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 sufferers. Sci. Rep. 11, 1580. https://doi.org/10.1038/s41598-020-80010-z (2021).
Lopez-Castaneda, S. et al. Inflammatory and prothrombotic biomarkers related to the severity of COVID-19 an infection. Clin. Appl. Thromb. Hemost. 27, 1076029621999099. https://doi.org/10.1177/1076029621999099 (2021).
Bachmann, M. F. & Whitehead, P. Energetic immunotherapy for power illnesses. Vaccine. 31, 1777–1784 (2013).
Asakura, H. Classifying sorts of disseminated intravascular coagulation: Scientific and animal fashions. J. Intensive Care. 2, 20. https://doi.org/10.1186/2052-0492-2-20 (2014).
Shou, S. et al. Animal fashions for COVID-19: Hamsters, mouse, ferret, mink, tree shrew, and non-human primates. Entrance. Microbiol. 12, 626553. https://doi.org/10.3389/fmicb.2021.626553 (2021).
Hojyo, S. et al. How COVID-19 induces cytokine storm with excessive mortality. Inflamm. Regen. 40, 37. https://doi.org/10.1186/s41232-020-00146-3 (2020).
Rega, G. et al. Inflammatory cytokines interleukin-6 and oncostatin m induce plasminogen activator inhibitor-1 in human adipose tissue. Circulation 111, 1938–1945 (2005).
Carvelli, J. et al. Affiliation of COVID-19 irritation with activation of the C5a–C5aR1 axis. Nature 588, 146–150 (2020).
Han, M. & Pandey, D. ZMPSTE24 regulates SARS-CoV-2 spike protein-enhanced expression of endothelial PAI-1. Am. J. Respir. Cell Mol. Biol. 65, 300–308 (2021).
Singh, A. Ok. et al. Prevalence of co-morbidities and their affiliation with mortality in sufferers with COVID-19: A scientific evaluation and meta-analysis. Diabetes Obes. Metab. 22, 1915–1924 (2020).
Khan, S. S. et al. A null mutation in SERPINE1 protects in opposition to organic getting old in people. Sci. Adv. 3, eaao1617. https://doi.org/10.1126/sciadv.aao1617 (2017).
Fay, W. P., Parker, A. C., Condrey, L. R. & Shapiro, A. D. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: Characterization of a big kindred with a null mutation within the PAI-1 gene. Blood 90, 204–208 (1997).
Huntington, J. A., Learn, R. J. & Carrell, R. W. Construction of a serpin-protease advanced reveals inhibition by deformation. Nature 407, 923–926 (2000).
Tsantes, A. E. et al. The impact of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic threat. Thromb. Res. 122, 736–742 (2008).
Kruithof, E. Ok., Tran-Thang, C. & Bachmann, F. The fast-acting inhibitor of tissue-type plasminogen activator in plasma can be the first plasma inhibitor of urokinase. Thromb. Haemost. 55, 65–69 (1986).
Mottonen, J. et al. Structural foundation of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).
Vousden, Ok. A. et al. Discovery and characterisation of an antibody that selectively modulates the inhibitory exercise of plasminogen activator inhibitor-1. Sci. Rep. 9, 1605. https://doi.org/10.1038/s41598-019-38842-x (2019).
Kashiwagi, R., Sato, R., Masumoto, M., Yoshino, M. & Tanaka, H. AS3288802, a extremely selective antibody to lively plasminogen activator inhibitor-1 (PAI-1), displays lengthy efficacy length in cynomolgus monkeys. Biologicals 67, 21–28 (2020).
Gupta, Ok. Ok., Donahue, D. L., Sandoval-Cooper, M. J., Castellino, F. J. & Ploplis, V. A. Abrogation of plasminogen activator inhibitor-1-vitronectin interplay ameliorates acute kidney damage in murine endotoxemia. PLoS ONE 10, e0120728. https://doi.org/10.1371/journal.pone.0120728 (2015).
Gupta, Ok. Ok., Xu, Z., Castellino, F. J. & Ploplis, V. A. Plasminogen activator inhibitor-1 stimulates macrophage activation by way of Toll-like Receptor-4. Biochem. Biophys. Res. Commun. 477, 503–508 (2016).
Narasaki, R. et al. The vitronectin-binding area of plasminogen activator inhibitor-1 performs an essential useful position in lipopolysaccharide-induced lethality in mice. J. Thromb. Haemost. 10, 2618–2621 (2012).
Fernández, S. et al. Distinctive biomarker options within the endotheliopathy of COVID-19 and septic syndromes. Shock 57, 95–105 (2022).
Umemura, Y. et al. Hematological phenotype of COVID-19-induced coagulopathy: Removed from typical sepsis-induced coagulopathy. J. Clin. Med. 9, 2875. https://doi.org/10.3390/jcm9092875 (2020).
Campbell, R. A. et al. Comparability of the coagulopathies related to COVID-19 and sepsis. Res. Pract. Thromb. Haemost. 5, e12525. https://doi.org/10.1002/rth2.12525 (2021).
Dittmann, M. et al. A serpin shapes the extracellular setting to forestall influenza A virus maturation. Cell 160, 631–643 (2015).
Medcalf, R. L., Keragala, C. B. & Myles, P. S. Fibrinolysis and COVID-19: A plasmin paradox. J. Thromb. Haemost. 18, 2118–2122 (2020).
Zmijewski, J. W. et al. Inhibition of neutrophil apoptosis by PAI-1. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L247-254 (2011).
Raeven, P. et al. Systemic inhibition and liver-specific over-expression of PAI-1 failed to enhance survival in all-inclusive populations or homogenous cohorts of CLP mice. J. Thromb. Haemost. 12, 958–969 (2014).
Declerck, P. J. et al. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood 71, 220–225 (1988).
Bajou, Ok. et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interplay with proteases, not vitronectin. Implications for antiangiogenic methods. J. Cell Biol. 152, 777–784 (2001).
Iwaki, T. et al. Life-threatening hemorrhage and extended wound therapeutic are outstanding phenotypes manifested by full plasminogen activator inhibitor-1 deficiency in people. J. Thromb. Haemost. 9, 1200–1206 (2011).
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Enhancing bioscience analysis reporting: The ARRIVE tips for reporting animal analysis. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).
Declerck, P. J., De Mol, M., Vaughan, D. E. & Collen, D. Identification of a conformationally distinct type of plasminogen activator inhibitor-1, appearing as a noninhibitory substrate for tissue-type plasminogen activator. J. Biol. Chem. 267, 11693–11696 (1992).
Azegami, T. et al. Vaccination in opposition to receptor for superior glycation finish merchandise attenuates the development of diabetic kidney illness. Diabetes 70, 2147–2158 (2021).
Yaoita, N. et al. Thrombin-activatable fibrinolysis inhibitor in power thromboembolic pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 36, 1293–1301 (2016).
Liu, Y., Jennings, N. L., Dart, A. M. & Du, X. J. Standardizing an easier, extra delicate and correct tail bleeding assay in mice. World J. Exp. Med. 2, 30–36 (2012).